Fakultät Informatik und Mathematik
Regensburg Center for Artificial Intelligence
Regensburg Center of Biomedical Engineering
Regensburg Center of Health Sciences and Technology

Prof. Dr. rer nat. Christoph Palm

Johanna Sabine Becker, Miroslav Zoriy, Andreas Matusch, Bei Wu, Dagmar Salber, Christoph Palm, Julia Susanne Becker

The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non‐metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) using double‐focusing sector field (LA‐ICP‐SFMS) or quadrupole‐based mass spectrometers (LA‐ICP‐QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA‐ICP‐QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA‐ICP‐MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal‐containing proteins and also phosphoproteins. Metal‐containing proteins were imaged in a two‐dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA‐ICP‐MS imaging as a stand‐alone technique and in combination with MALDI/ESI‐MS for selected life science applications is summarized.

Wir benutzen Cookies um die Nutzerfreundlichkeit der Webseite zu verbessen. Durch Deinen Besuch stimmst Du dem zu.