Björn Eiben, Dietmar Kunz, Uwe Pietrzyk, Christoph Palm
In dieser Arbeit wird die Segmentierung von Gehirngewebe aus Kopfaufnahmen von Ratten mittels Level-Set-Methoden vorgeschlagen. Dazu wird ein zweidimensionaler, kontrastbasierter Ansatz zu einem dreidimensionalen, lokal an die Bildintensität adaptierten Segmentierer erweitert. Es wird gezeigt, dass mit diesem echten 3D-Ansatz die lokalen Bildstrukturen besser berücksichtigt werden können. Insbesondere Magnet-Resonanz-Tomographien (MRTs) mit globalen Helligkeitsgradienten, beispielsweise bedingt durch Oberflächenspulen, können auf diese Weise zuverlässiger und ohne weitere Vorverarbeitungsschritte segmentiert werden. Die Leistungsfähigkeit des Algorithmus wird experimentell an Hand dreier Rattenhirn-MRTs demonstriert.