Thomas Beyer, Markus Weigert, Harald H. Quick, Uwe Pietrzyk, Florian Vogt, Christoph Palm, Gerald Antoch, Stefan P. Müller, Andreas Bockisch
Purpose
MR-based attenuation correction (AC) will become an integral part of combined PET/MR systems. Here, we propose a toolbox to validate MR-AC of clinical PET/MRI data sets.
Methods
Torso scans of ten patients were acquired on a combined PET/CT and on a 1.5-T MRI system. MR-based attenuation data were derived from the CT following MR–CT image co-registration and subsequent histogram matching. PET images were reconstructed after CT- (PET/CT) and MR-based AC (PET/MRI). Lesion-to-background (L/B) ratios were estimated on PET/CT and PET/MRI.
Results
MR–CT histogram matching leads to a mean voxel intensity difference in the CT- and MR-based attenuation images of 12% (max). Mean differences between PET/MRI and PET/CT were 19% (max). L/B ratios were similar except for the lung where local misregistration and intensity transformation leads to a biased PET/MRI.
Conclusion
Our toolbox can be used to study pitfalls in MR-AC. We found that co-registration accuracy and pixel value transformation determine the accuracy of PET/MRI.