Fakultät Informatik und Mathematik
Regensburg Center for Artificial Intelligence
Regensburg Center of Biomedical Engineering
Regensburg Center of Health Sciences and Technology

Prof. Dr. rer nat. Christoph Palm

DeepMIC - Deep Learning basierte Endoskopnachführung

Projektbeschreibung

Das Projekt DeepMIC schafft einen neuen Ansatz für ein intelligentes, kollaboratives Assistenzsystem zur Kameraführung bei minimal-invasiven chirurgischen Eingriffen. Das neue Assistenzsystem soll sich durch eine bisher noch nicht ansatzweise erreichte Adaptivität im Einsatz, eine intuitive Bedienbarkeit und die Fähigkeit zur aktiven (halb-) automatischen Kooperation mit dem Chirurgen auszeichnen und somit quasi selbstständig zu einer bestmöglichen Kameraführung fähig sein.

Der innovative Ansatz besteht in einer kontinuierlichen Auswertung und Klassifikation der Informationen des endoskopischen Kamerabildes durch Methoden der Künstlichen Intelligenz (hier speziell Deep Learning) in Kombination mit natürlicher Spracherkennung. Kombiniert mit Wissen aus dem chirurgischen Workflow soll das System eine Interaktion mit dem Chirurgen erlauben, die einer menschlichen Assistenz ähnlich ist und somit direkt auf die aktuellen Erfordernisse des Eingriffes reagieren kann.

Förderung

Zuwendung aus Mitteln der Bayerischen Forschungsstiftung,
Förderkennzeichen: AZ-1506-21

Zeitraum und Volumen

August 2021 bis August 2024

Gesamtprojekt: ca. 534 T€, Teilprojekt der OTH Regensburg: ca. 200 T€

Kooperationspartner

Wir benutzen Cookies um die Nutzerfreundlichkeit der Webseite zu verbessen. Durch Deinen Besuch stimmst Du dem zu.